Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Polymer Electrolyte Fuel Cells (PEFCs) exhibit considerable performance decay with cycling owing to the degradation of platinum (Pt) catalysts, resulting in the loss of the valuable electrochemically active surface area. Catalyst inventory retention is thus a necessity for a sustained cathodic oxygen reduction reaction (ORR) and to ameliorate the life expectancy of PEFCs. We demonstrate a thermo-kinetic model cognizant of processes like platinum particle dissolution–reprecipitation and oxide formation coupled with an electrochemical reactive transport model to derive mechanistic insights into the deleterious phenomena at the interfacial scale. The heterogeneous nature of particle aging in a catalyst layer environment is delineated through coarsening–shrinking zones and further comprehension of instability signatures is developed from the dissolution affinity of diameter bins through a metric, onset time. The severe degradation at high temperature and under fully humidified conditions is intertwined with the local transport resistance and the critical transient, where the catalyst nanoparticles reach a limiting diameter stage. We further reveal the degradation-performance characteristics through variation in the ionomer volume fraction and the mean size of the particle distribution in the electrode. It has been found that the kinetic and transport characteristics are crucially dependent on the interplay of two modes – one leading to the depletion of the catalyst nanoparticles and the other that emanates from catalyst coarsening.more » « less
-
The ionomer, which is responsible for proton transport, oxygen accessibility to reaction sites, and binding the carbon support particles, plays a central role in dictating the catalyst layer performance. In this work, we study the effect of ionomer distribution owing to the corrosion induced degradation mode in the catalyst layer based on a combined mesoscale modeling and experimental image-based data. It is observed that the coverage of the ionomer over the platinum-carbon interface is heterogeneous at the pore-scale which in turn can critically affect the electrode-scale performance. Further, an investigation of the response of the pristine as well as degraded microstructures that have been exposed to carbon support corrosion has been demonstrated to highlight the kinetic-transport underpinnings on the catalyst layer performance decay.more » « less
An official website of the United States government
